

CEA is operating OSIRIS reactor and building JHR with experimental devices to support industry and public organizations in R&D irradiation programs on nuclear fuel and materials.

In-core material testing : from CHOUCA to MICA and... CALIPSO

CHOUCA : device for material irradiations (clad, internal structures,...)

The CHOUCA device enables to irradiate materials samples inside the OSIRIS Core. It is made of 2 concentric tubes delimiting a gap filled with gas (used as a thermal barrier and to detect potential leaks). Six temperature-regulated heating elements are located along the sample volume height. Samples are held in position thanks to a sample holder (specific for a given sample load)

The CALIPSO loop will be a further development of MICA. It will use an integrated electromagnetic pump to circulate the NaK medium. This will therefore improve heat removal from sample materials surfaces leading to a better temperature control. A variable exchange length allows to extend the operating temperature range (250°C to

- **4 Medium:** gas or NaK (to improve thermal conductivity and therefore to homogenize sample temperature)
- **Usual operating temperature :** 250°C to 400°C , adjusted $\pm 5^{\circ}C$
- **Height under flux: 600** mm
- **4 Effective diameter:** 24mm
- **Fast neutron flux**: up to 2 10¹⁴ n/cm²/s
- **Gamma heating** : up to 13W.g⁻¹

The CHOUCA device with all its pneumatic and electric components

The CHOUCA sample holder contains many neutron activation dosimeters which enable to determine the neutron fluence received by the samples.

A longstanding experience on capsule and sample holders design that benefits to the JHR

450°C).

These capsules will be used with more innovative sample holders like the one designed, in the frame of a collaboration with the VTT Finnish research centre, for the Melodie Experiment. This experiment will allow to pilot biaxial stresses on zircaloy tubes and to monitor corresponding axial and radial deformations. First validation experiments are scheduled inside the OSIRIS reactor in 2012.

Diagram of the CALIPSO loop

Power ramps : from Isabelle to Adeline

Sample holder

4 The fuel rod is placed into PWR (or BWR) thermohydraulic **representative conditions** inside the ISABELLE 1 experimental loop.

4 The device enables to perform power ramps by moving the fuel rod perpendicular to the core housing.

4The speed of the fuel rod is controlled by neutronic

Axis of the Adeline loop Inserted inside the displacemen

The main features of the Isabelle 1 power-ramp device are maintained for the Adeline design. The fuel rod, placed in PWR or BWR thermohydraulic representative conditions, is moved towards the core to increase its nuclear power production.

measurements. The thermal power produced by the rod under neutronic flux is frequently measured and enables to guarantee high accuracy power targets (5.8% at 2σ).

 GRANDBURS
 HOYBINI
 NAXIMAN
 DYTECHAL
 210

 NINGALINA
 SIL, TSP
 20.1
 0.333187
 24.0

 NINGALINA
 454.5
 597.4
 0.31579
 24.0

 MIGGINI
 454.5
 495.814
 497
 0.315791
 24.0

 MIGGINI
 454.5
 495.814
 497
 0.315791
 24.0

 MIGGINI
 454.5
 495.814
 497
 0.315791
 24.0

 MIGGINIC
 459.5
 495.814
 497
 0.315457
 24.0

 MIGGINIC
 492.9
 501.864
 509.1
 0.825420
 210

On-line gamma monitoring, delayed neutrons detection, and elongation measurements allow early detection of clad failure.

4 Non Destructive Examinations (gamma spectrometry and neutronography) of the fuel rod (before and after power ramps) enable to check for the initial burnup, to check for pellets restructuring, to precise neutron flux profile during the ramp...

A longstanding experience on power ramps that will benefit to the JHR

With more instrumentation : the sample can be instrumented with a fuel centerline thermocouple and back-pressure sensor (to analyze fission products and helium release kinetics). This type of instrumented fuel rods has been used for several experiments in OSIRIS using GRIFFONOS loop.

Unlike ISABELLE1, ADELINE device will use a sample holder (which contains a fuel rod) and a separated instrumentation holder (which contains the thermocouples for thermal balance measurement).

The objectives are also to make more ramps per cycle avoiding connecting/ reconnecting phases and hot cells transfer. This should also reduce delays before nondestructive examination. The loading and unloading of the sample holder underwater is in designing stage.

Diagram of the displacement system Underwater connection Displacemen Diagram of the in-pile Adeline loop

A Photonic and neutronic measurement devices : from CALMOS to CARMEN

A new OSIRIS calorimetric probe : CALMOS

- 4 To associate gamma heating and thermal flux measurements
- 4 To be able to perform measurements at any axial position along the core height or above.

measurements are scheduled for november 2011

CARMEN keeps advantages of the mobile probe concept but adds new measurements

CARMEN 1: 2 mock-ups to compare different measurement technologies in OSIRIS 2 steps: **CARMEN 2:** design and manufacture of the final JHR device.

CARMEN 1 design:

- Photonic probe : Bismuth SPND + ionisation chamber without fissile deposit (data correction), gamma thermometer +

- **4** To access to measurements **inside and above the** core (respectively < 2W/g and <13W/g) with a good sensibility.
- 4 To design a calorimetric probe remaining in the (stainless steel) irradiation field only during measurement periods Dummy SPND (limiting the ageing).
- \rightarrow Mobile probe (a 2 steps measurement process)

Heating measurement = K (ΔT sample – ΔT reference) = K $\Delta \Delta T$. K coefficient is determined from a calibration step where heat is generated using electric current

calorimeter

- Neutronic probe : Rhodium SPND + ²³⁵U fission chamber (thermal neutron measurement) + ²⁴² Pu fission chamber (fast neutron measurement) + ionisation chamber without fissile deposit (data correction)

Both probes are going to be manufactured and tested inside the Osiris'pool at the beginning of 2012.

LCONCLUSION

The longstanding experience on OSIRIS is being tranferred to the JHR teams. From the OSIRIS' feed-back, more instrumented irradiation devices have been designed in order to offer to JHR customers even better experimental facilitie and to guarantee continuity of programs.